Medizinische Tests an Mikrochips ersetzen Tierversuche

Ein neuer Mikrochip-Organismus könnte künftig Tierversuche ersetzen. Das Multi-Organ-System pumpt ähnlich wie das Herz Flüssigkeiten durch Zellproben. Damit lassen sich die komplexen Stoffwechselvorgänge im menschlichen Körper exakt nachahmen.

Ihren XING-Kontakten zeigen
linkedin
abo-pic
Ein Prozessor als Herz pumpt „Blut“ durch den künstlichen Mini-Organismus und kann so den menschlichen Stoffwechsel nachahmen. (Foto: Fraunhofer Institut)

Ein Prozessor als Herz pumpt „Blut“ durch den künstlichen Mini-Organismus und kann so den menschlichen Stoffwechsel nachahmen. (Foto: Fraunhofer Institut)

Forscher des Fraunhofer-Instituts haben gemeinsam mit der TU Berlin eine neuartige Lösung entwickelt, die Tierversuche in der Medizin oder Kosmetikindustrie überflüssig machen könnte: Einen Multiorgan-Chip, der die komplexen Stoffwechselvorgänge im menschlichen Körper verblüffend genau nachstellt.

„Unser System ist ein Miniorganismus im Maßstab 1:100 000 zum Menschen“, so Sonntag. In dem Chip lassen sich an mehreren Positionen menschliche Zellen aus verschiedenen Organen aufbringen. Die Zellen haben die Forscher aus Blutspenden gewonnen, die für Forschungszwecke zur Verfügung stehen. Diese „Mini-Organe“ sind durch winzige Kanäle miteinander verbunden. „Damit simulieren wir den menschlichen Blutkreislauf“, erklärt Dr. Frank Sonntag vom Fraunhofer-Institut für Werkstoff und Strahltechnik IWS.

Eine Mikropumpe befördert – ähnlich wie das menschliche Herz – kontinuierlich flüssiges Zellkulturmedium durch feine Mikrokanäle. Den genauen Aufbau des Chips, also die Anzahl der Mini-Organe und die Verbindung mit den Mikrokanälen, können die IWS-Forscher spezifisch an unterschiedliche Fragestellungen und Anwendungen anpassen. Mit dem Chip lassen sich sowohl Wirkstoffe von neuen Medikamenten testen als auch Kosmetika auf ihre Hautverträglichkeit untersuchen.

Weltweit arbeiten Forscher an Alternativen zu Tierexperimenten. Doch Ersatz zu finden, ist schwierig. Denn um die Wirkung einer Substanz zu verstehen, genügt es nicht, die Stoffe an einzelnen Gewebeproben oder Zellen zu testen. „Die meisten Medikamente wirken systemisch, also auf den gesamten Organismus. Dabei entstehen oftmals erst durch Stoffwechselvorgänge toxische Substanzen, die wiederum nur bestimmte Organe schädigen“, erklärt Sonntag.

Die Idee, verschiedene Zellproben mit Fluidkanälen zu verbinden, gibt es schon länger. Das neue System hat jedoch gegenüber bisherigen Ansätzen zwei entscheidende Vorteile: Zum einen ist das Mikrofluidiksystem extrem miniaturisiert. Die Pumpe ist in der Lage, winzigste Fördermengen von unter 0,5 Mikroliter pro Sekunde durch die Kanäle zu schleusen. „Dadurch ist das Verhältnis zwischen Zellprobe und flüssigem Medium realitätsgetreu“, erläutert Sonntag. Zweitens sorgt das Mikrofluidiksystem für eine Strömung – wie das menschliche Blut fließt das Medium kontinuierlich durch den gesamten Kreislauf auf dem Chip. Das ist wichtig, da manche Zelltypen sich nur dann »authentisch« verhalten, wenn sie durch eine Strömung angeregt werden.

Um die Wirkung einer Substanz zu testen, bestücken die Wissenschaftler zunächst den Chip mit verschiedenen Zellproben. Der zu testende Wirkstoff wird dann über das Medium der Zellprobe desjenigen Organs zugeführt, an dem der Stoff im menschlichen Körper in den Blutkreislauf eintreten würde. Das sind zum Beispiel Zellen aus der Darmwand. Auf dem Chip laufen dann die gleichen Stoffwechselreaktionen wie im menschlichen Organismus ab.

„Wir verwenden Zellproben unterschiedlicher Geschlechter und Ethnien. Variationen von Körpergröße und -Gewicht können wir im Maßstab von 1:100 000 beliebig nachstellen“, so Sonntag. Die Forscher sehen genau, welche Stoffwechselprodukte sich in bestimmten Zellproben bilden und ob und welche Auswirkungen dies auf andere Zellen hat. Die Ergebnisse sind letztlich sogar aussagekräftiger als Tierexperimente: Denn die Wirkungen auf den Körper einer Maus oder Ratte lassen sich nicht eins zu eins auf den Menschen übertragen.

Bei einigen Unternehmen, etwa in der Kosmetikindustrie, ist der künstliche Organismus bereits im Einsatz. Neben der Wirkstoffforschung gibt es aber noch weiteres Anwendungspotenzial: „Man weiß heute, dass bestimmte Nierenzellen, so genannte Endothelzellen, bei fast allen Nierenerkrankungen eine Schlüsselrolle spielen. Bisher gab es bei In-vitro-Tests das Problem, dass Endothelzellen nur unter Strömung funktionieren. Hier könnte unser Multiorgan-Chip eine Testumgebung bieten, in der sich beobachten lässt, wie sich Zellen nach einer Schädigung regenerieren“, so Sonntag.

Als Alternative zu Tierversuchen wurde der künstliche Mini-Organismus kürzlich mit dem Tierschutz-Forschungspreis 2014 ausgezeichnet.


media-fastclick media-fastclick