Technologie

Max-Planck-Institut entwickelt Algorithmus, der Todes-Risiko bei Corona voraussagt

Künstlich intelligente Algorithmen können das individuelle Sterblichkeitsrisiko von Corona-Patienten vorhersagen.
18.03.2021 09:45
Aktualisiert: 18.03.2021 09:45
Lesezeit: 2 min

Ein Forscherteam des Max-Planck-Instituts hat einen mit Künstlicher Intelligenz (KI) ausgestatteten Algorithmus entwickelt, der das Sterbe-Risiko von Covid-Patienten vorhersagen kann. Der Algorithmus hilft Ärzten also bei der Entscheidung, welche Betroffene in die Intensivbehandlung verlegt werden sollen. Er soll auch bei der Vorhersage des Sterblichkeitsrisikos bei anderen Erkrankungen einsetzbar sein.

Bei Covid-19 sind hohes Alter und Vorerkrankungen relevante Risikofaktoren für eine ernsthafte Erkrankung, es sind aber längst nicht die einzigen. Auch die Sauerstoffsättigung, die Zahl der weißen Blutkörperchen sowie der Kreatinin-Wert gehören dazu. „Aber selbst erfahrene Mediziner können in diesen Parametern nicht früh genug eindeutige Muster für einen tödlichen Verlauf erkennen, um eventuell noch die Therapie anzupassen“, sagt Stefan Bauer, Leiter einer Forschungsgruppe am Max-Planck-Institut für Intelligente Systeme in Tübingen.

Genau hier kann Künstliche Intelligenz hilfreich sein. Der Algorithmus lernt anhand von vielen Beispielen, Muster in Daten zu erkennen. Ein internationales Team um Stefan Bauer und Patrick Schwab (ehemaliger Mitarbeiter des Pharmakonzerns Roche) hat den Algorithmus entwickelt und mit Daten zu Krankheitsverläufen von Tausenden Covid-19-Patientinnen und -Patienten darauf trainiert, die individuelle Sterblichkeit für die Erkrankung vorherzusagen. Den Algorithmus nennen sie „Covews“, kurz für "Covid-19 Early Warning System". Neben Wissenschaftlern des Tübinger Max-Planck-Instituts und von Roche waren auch Forscher der Harvard-Universität, der Harvard Medical School sowie des Massachusetts Institute of Technology, der Universitätsklinik Tübingen und des Kantonsspitals Winterthur an der Arbeit beteiligt.

Die Vorhersagen sind recht treffsicher, aber nicht perfekt

Covews liest aus den medizinischen Daten bis zu acht Tage im Voraus, wenn ein Patient zu sterben droht, und zwar mit einer Sensitivität von mehr als 95 Prozent. Das heißt, der Algorithmus erkennt bei 95 von 100 „zum Tode verurteilten“ Menschen korrekterweise, dass sie sterben werden, wenn keine Maßnahmen getroffen werden, um das zu verhindern.

Für das Training von Covews nutzten die Forschenden 33.000 anonymisierte Datensätze aus einer Kohorte namens Optum, die Patientinnen und Patienten in verschiedenen Krankenhäusern der USA erfasst. Sie fütterten den Algorithmus also mit Information darüber, wie sich routinemäßig erhobene Gesundheitsparameter einer Patientin oder eines Patienten im Krankheitsverlauf entwickelten und ob die Person an Covid-19 starben oder nicht. Auf diese Weise lernte Covews, in den Datensätzen Muster zu erkennen, die auf ein hohes Sterblichkeitsrisiko hinweisen. Wie treffsicher Covews dieses Risiko einschätzt, testete das internationale Team anschließend an etwa 14.000 weiteren Datensätzen aus der Optum-Kohorte sowie – um einen Zufallsfund auszuschließen – an anderen Datensätzen, die nicht von Optum stammten.

Statistische Unsicherheiten

Obwohl Covews zuverlässige Vorhersagen trifft, dürfte es bis zu seinem praktischen Einsatz noch eine Weile dauern. „Bis solche neuen Techniken im Klinikalltag angewendet werden, vergehen oftmals mehrere Jahre“, sagt Stefan Bauer. Das liegt unter anderem daran, dass Daten vielen Krankenhäusern nicht strukturiert vorliegen, was die Entwicklung einer geeigneten Software auf Basis des Algorithmus besonders herausfordernd macht. Indem die Forscher Covews frei zugänglich ins Netz stellen, schaffen sie jedenfalls die Voraussetzungen, den Algorithmus zügig in die Praxis zu bringen. Und Anwendung könnte er nicht nur bei Covid-19-Patienten finden. Mit dem entsprechenden Training könnte er auch das Sterblichkeitsrisiko für andere Erkrankungen vorhersagen.

Wie die meisten Vorhersagen mit Methoden des maschinellen Lernens werden die Prognosen von Covews nicht aus Kausalzusammenhängen, sondern aus Korrelationen abgeleitet. Bei Korrelationen kann es sich um einen rein statistischen, also nicht ursächlichen Zusammenhang handeln.

Das Entwickler-Team weist zudem auf eine Einschränkung der Covews-Berechnungen hin: Möglicherweise sind die Zahlen dadurch verzerrt, dass der Algorithmus nicht nur die Sterblichkeit, sondern auch den Abbruch der Behandlung voraussagt. Dann würden die Prognosen nicht nur auf medizinischen Fakten beruhen.

Entscheidungen über Therapien müssen immer Ärzte treffen

„Bei der Entscheidung, eine Therapie einzustellen, spielen nicht nur medizinische Überlegungen eine Rolle“, sagt Stefan Bauer. Auch religiöse, kulturelle oder persönliche Haltungen können Menschen dazu bringen, sich nicht weiter behandeln zu lassen. So können Menschen generell eine künstliche Beatmung ablehnen oder aus Furcht vor den Langzeitfolgen einer Erkrankung die Rettung ihres Lebens ablehnen. Und oft genug sind es Familienangehörige oder Freunde, die bei solchen Entscheidungen mitsprechen. „Über Therapiemaßnahmen müssen daher immer Ärztinnen oder Ärzte entscheiden“, so Bauer. „Unser Algorithmus kann jedoch Erkenntnisse liefern, die Menschen aus den Daten nicht ableiten können, und die bei medizinischen Entscheidungen helfen können.“

Mehr zum Thema
Bleiben Sie über das Thema dieses Artikels auf dem Laufenden Klicken Sie auf [+], um eine E-Mail zu erhalten, sobald wir einen neuen Artikel mit diesem Tag veröffentlichen
Anzeige
DWN
Finanzen
Finanzen Während der Markt panikartig verkauft, setzt das "kluge Geld" fieberhaft Bitcoin-Druckmaschinen ein?

Der Markt hat kürzlich eine scharfe Korrektur durchlaufen, wobei sich Panik wie eine Seuche ausbreitete, als Verkäufer ihre...

X

DWN-Wochenrückblick

Weniger E-Mails, mehr Substanz: Der DWN-Wochenrückblick liefert 1x/Woche die wichtigsten Themen kompakt und Podcast. Für alle, deren Postfach überläuft.

E-mail: *

Ich habe die Datenschutzerklärung sowie die AGB gelesen und erkläre mich einverstanden.

DWN
Technologie
Technologie HVO-Diesel: Potenzial und Grenzen eines synthetischen Kraftstoffs
10.02.2026

Künstlich hergestellter Dieselkraftstoff kann die CO₂-Bilanz bestehender Dieselautos deutlich verbessern. Wird HVO-Diesel damit zu einer...

DWN
Politik
Politik Drohnenproduktion in der EU: Ukraine startet Fertigung in Deutschland
10.02.2026

Die Ukraine verlagert Teile ihrer Drohnenproduktion nach Deutschland und stärkt damit die europäische Rüstungsindustrie. Welche Folgen...

DWN
Finanzen
Finanzen Teamviewer-Aktie rutscht ab: Teamviewer blickt zurückhaltend aufs neue Jahr – schwieriges Marktumfeld
10.02.2026

Die Teamviewer-Aktie steht nach einem deutlichen Kursrutsch erneut im Fokus der Anleger. Vorsichtige Ziele für 2026, ein schwieriges...

DWN
Wirtschaft
Wirtschaft US-Börsen im Wandel: Neue Bewertungsmaßstäbe an den Finanzmärkten
10.02.2026

Die US-Börsen geraten durch technologische Umbrüche und veränderte globale Kapitalströme in eine Phase der Neubewertung. Welche...

DWN
Finanzen
Finanzen Tui-Aktie: Verhaltene Börsenreaktion nach starken Tui-Zahlen und stabiler Prognose – die Gründe
10.02.2026

Starke Zahlen, sinkender Kurs: Der Reisekonzern Tui startet operativ so erfolgreich wie lange nicht. Hotels und Kreuzfahrten liefern...

DWN
Finanzen
Finanzen DAX-Kurs aktuell stabil über 25.000 Punkten – startet der Leitindex Richtung Rekordhoch?
10.02.2026

Der DAX-Kurs hält sich knapp über der psychologisch wichtigen Marke von 25.000 Punkten und sorgt damit für Spannung an den Märkten....

DWN
Unternehmen
Unternehmen Entscheidung im Tchibo-Aldi-Rechtsstreit: Kaffeeröster muss vor Gericht Niederlage hinnehmen
10.02.2026

Der Tchibo-Aldi-Rechtsstreit ist entschieden: Wieder muss der Hamburger Kaffeeröster vor Gericht eine Niederlage hinnehmen. Doch das...

DWN
Finanzen
Finanzen Olympische Winterspiele in Milano Cortina 2026: Diese Olympia-Aktien profitieren
10.02.2026

Die Olympischen Winterspiele 2026 in Mailand Cortina sind in vollem Gange, für das deutsche Olympia-Team gab es bereits mehrere Medaillen,...