Technologie

Max-Planck-Institut entwickelt Algorithmus, der Todes-Risiko bei Corona voraussagt

Künstlich intelligente Algorithmen können das individuelle Sterblichkeitsrisiko von Corona-Patienten vorhersagen.
18.03.2021 09:45
Aktualisiert: 18.03.2021 09:45
Lesezeit: 2 min

Ein Forscherteam des Max-Planck-Instituts hat einen mit Künstlicher Intelligenz (KI) ausgestatteten Algorithmus entwickelt, der das Sterbe-Risiko von Covid-Patienten vorhersagen kann. Der Algorithmus hilft Ärzten also bei der Entscheidung, welche Betroffene in die Intensivbehandlung verlegt werden sollen. Er soll auch bei der Vorhersage des Sterblichkeitsrisikos bei anderen Erkrankungen einsetzbar sein.

Bei Covid-19 sind hohes Alter und Vorerkrankungen relevante Risikofaktoren für eine ernsthafte Erkrankung, es sind aber längst nicht die einzigen. Auch die Sauerstoffsättigung, die Zahl der weißen Blutkörperchen sowie der Kreatinin-Wert gehören dazu. „Aber selbst erfahrene Mediziner können in diesen Parametern nicht früh genug eindeutige Muster für einen tödlichen Verlauf erkennen, um eventuell noch die Therapie anzupassen“, sagt Stefan Bauer, Leiter einer Forschungsgruppe am Max-Planck-Institut für Intelligente Systeme in Tübingen.

Genau hier kann Künstliche Intelligenz hilfreich sein. Der Algorithmus lernt anhand von vielen Beispielen, Muster in Daten zu erkennen. Ein internationales Team um Stefan Bauer und Patrick Schwab (ehemaliger Mitarbeiter des Pharmakonzerns Roche) hat den Algorithmus entwickelt und mit Daten zu Krankheitsverläufen von Tausenden Covid-19-Patientinnen und -Patienten darauf trainiert, die individuelle Sterblichkeit für die Erkrankung vorherzusagen. Den Algorithmus nennen sie „Covews“, kurz für "Covid-19 Early Warning System". Neben Wissenschaftlern des Tübinger Max-Planck-Instituts und von Roche waren auch Forscher der Harvard-Universität, der Harvard Medical School sowie des Massachusetts Institute of Technology, der Universitätsklinik Tübingen und des Kantonsspitals Winterthur an der Arbeit beteiligt.

Die Vorhersagen sind recht treffsicher, aber nicht perfekt

Covews liest aus den medizinischen Daten bis zu acht Tage im Voraus, wenn ein Patient zu sterben droht, und zwar mit einer Sensitivität von mehr als 95 Prozent. Das heißt, der Algorithmus erkennt bei 95 von 100 „zum Tode verurteilten“ Menschen korrekterweise, dass sie sterben werden, wenn keine Maßnahmen getroffen werden, um das zu verhindern.

Für das Training von Covews nutzten die Forschenden 33.000 anonymisierte Datensätze aus einer Kohorte namens Optum, die Patientinnen und Patienten in verschiedenen Krankenhäusern der USA erfasst. Sie fütterten den Algorithmus also mit Information darüber, wie sich routinemäßig erhobene Gesundheitsparameter einer Patientin oder eines Patienten im Krankheitsverlauf entwickelten und ob die Person an Covid-19 starben oder nicht. Auf diese Weise lernte Covews, in den Datensätzen Muster zu erkennen, die auf ein hohes Sterblichkeitsrisiko hinweisen. Wie treffsicher Covews dieses Risiko einschätzt, testete das internationale Team anschließend an etwa 14.000 weiteren Datensätzen aus der Optum-Kohorte sowie – um einen Zufallsfund auszuschließen – an anderen Datensätzen, die nicht von Optum stammten.

Statistische Unsicherheiten

Obwohl Covews zuverlässige Vorhersagen trifft, dürfte es bis zu seinem praktischen Einsatz noch eine Weile dauern. „Bis solche neuen Techniken im Klinikalltag angewendet werden, vergehen oftmals mehrere Jahre“, sagt Stefan Bauer. Das liegt unter anderem daran, dass Daten vielen Krankenhäusern nicht strukturiert vorliegen, was die Entwicklung einer geeigneten Software auf Basis des Algorithmus besonders herausfordernd macht. Indem die Forscher Covews frei zugänglich ins Netz stellen, schaffen sie jedenfalls die Voraussetzungen, den Algorithmus zügig in die Praxis zu bringen. Und Anwendung könnte er nicht nur bei Covid-19-Patienten finden. Mit dem entsprechenden Training könnte er auch das Sterblichkeitsrisiko für andere Erkrankungen vorhersagen.

Wie die meisten Vorhersagen mit Methoden des maschinellen Lernens werden die Prognosen von Covews nicht aus Kausalzusammenhängen, sondern aus Korrelationen abgeleitet. Bei Korrelationen kann es sich um einen rein statistischen, also nicht ursächlichen Zusammenhang handeln.

Das Entwickler-Team weist zudem auf eine Einschränkung der Covews-Berechnungen hin: Möglicherweise sind die Zahlen dadurch verzerrt, dass der Algorithmus nicht nur die Sterblichkeit, sondern auch den Abbruch der Behandlung voraussagt. Dann würden die Prognosen nicht nur auf medizinischen Fakten beruhen.

Entscheidungen über Therapien müssen immer Ärzte treffen

„Bei der Entscheidung, eine Therapie einzustellen, spielen nicht nur medizinische Überlegungen eine Rolle“, sagt Stefan Bauer. Auch religiöse, kulturelle oder persönliche Haltungen können Menschen dazu bringen, sich nicht weiter behandeln zu lassen. So können Menschen generell eine künstliche Beatmung ablehnen oder aus Furcht vor den Langzeitfolgen einer Erkrankung die Rettung ihres Lebens ablehnen. Und oft genug sind es Familienangehörige oder Freunde, die bei solchen Entscheidungen mitsprechen. „Über Therapiemaßnahmen müssen daher immer Ärztinnen oder Ärzte entscheiden“, so Bauer. „Unser Algorithmus kann jedoch Erkenntnisse liefern, die Menschen aus den Daten nicht ableiten können, und die bei medizinischen Entscheidungen helfen können.“

Mehr zum Thema
article:fokus_txt
DWN
Politik
Politik Bündnis Sahra Wagenknecht: AfD unterstützt Neuauszählung der Bundestagswahl
26.11.2025

An gerade mal 9.500 fehlenden Stimmen scheiterte im Februar der Einzug des BSW in den Deutschen Bundestag. Seitdem fordert die Partei eine...

DWN
Unternehmen
Unternehmen Insolvenz bei GOVECS – das Ende der elektrischen Schwalbe
26.11.2025

Das Münchner Unternehmen Govecs stellt unter dem Namen der in der DDR populären Moped-Marke seit einigen Jahren Elektroroller her. Nun...

DWN
Politik
Politik Regierung plant „Grüngas-Quote“: Mehr Umweltschutz auf Kosten der Industrie und Verbraucher
26.11.2025

Die schwarz-rote Regierung plant eine Quote, um die schleppende Wasserstoffwirtschaft in Deutschland auszubauen. Unternehmen sollen...

DWN
Politik
Politik Chatkontrolle: EU-Staaten setzen auf freiwillige Maßnahmen statt Pflichtkontrollen
26.11.2025

Die EU ringt seit Jahren darum, wie digitale Kommunikation geschützt und zugleich besser überwacht werden kann. Doch wie weit sollen...

DWN
Unternehmen
Unternehmen Schwarz Group plant Lidl-Rechenzentrum: Milliardenprojekt für Deutschlands KI-Infrastruktur
26.11.2025

Die Großinvestition der Schwarz Group verdeutlicht den wachsenden Wettbewerb um digitale Infrastruktur in Europa. Doch welche Bedingungen...

DWN
Unternehmen
Unternehmen Jobs wandern nach Südamerika: Faber-Castell will 130 Stellen in Deutschland streichen
26.11.2025

Hohe Kosten und eine schwache Nachfrage: Der fränkische Schreibwarenhersteller will Fertigung nach Südamerika verlagern und dafür...

DWN
Wirtschaft
Wirtschaft Covestro-Überrnahme genehmigt: Abu Dhabi wird vom Ölreich zum Chemieriesen
26.11.2025

In Abu Dhabi gilt die Chemieindustrie als Zukunftsmodell. Zentraler Baustein der Vision: Die Übernahme des Leverkusener...

DWN
Politik
Politik Nach AfD-Einladung: Deutsche Bank kündigt "Familienunternehmer" den Mietvertrag
26.11.2025

Der Verband „Die Familienunternehmer“ lädt einen AfD-Politiker ein. Daraufhin beendet die Deutsche Bank einen Mietvertrag. Der Verband...