Technologie

Max-Planck-Institut entwickelt Algorithmus, der Todes-Risiko bei Corona voraussagt

Lesezeit: 2 min
18.03.2021 09:45  Aktualisiert: 18.03.2021 09:45
Künstlich intelligente Algorithmen können das individuelle Sterblichkeitsrisiko von Corona-Patienten vorhersagen.
Max-Planck-Institut entwickelt Algorithmus, der Todes-Risiko bei Corona voraussagt
Der Covews-Algorithmus unterstützt Ärzte mit Covid-19-Sterblichkeitsprognosen. (Foto: dpa)

Mehr zum Thema:  
Benachrichtigung über neue Artikel:  

Ein Forscherteam des Max-Planck-Instituts hat einen mit Künstlicher Intelligenz (KI) ausgestatteten Algorithmus entwickelt, der das Sterbe-Risiko von Covid-Patienten vorhersagen kann. Der Algorithmus hilft Ärzten also bei der Entscheidung, welche Betroffene in die Intensivbehandlung verlegt werden sollen. Er soll auch bei der Vorhersage des Sterblichkeitsrisikos bei anderen Erkrankungen einsetzbar sein.

Bei Covid-19 sind hohes Alter und Vorerkrankungen relevante Risikofaktoren für eine ernsthafte Erkrankung, es sind aber längst nicht die einzigen. Auch die Sauerstoffsättigung, die Zahl der weißen Blutkörperchen sowie der Kreatinin-Wert gehören dazu. „Aber selbst erfahrene Mediziner können in diesen Parametern nicht früh genug eindeutige Muster für einen tödlichen Verlauf erkennen, um eventuell noch die Therapie anzupassen“, sagt Stefan Bauer, Leiter einer Forschungsgruppe am Max-Planck-Institut für Intelligente Systeme in Tübingen.

Genau hier kann Künstliche Intelligenz hilfreich sein. Der Algorithmus lernt anhand von vielen Beispielen, Muster in Daten zu erkennen. Ein internationales Team um Stefan Bauer und Patrick Schwab (ehemaliger Mitarbeiter des Pharmakonzerns Roche) hat den Algorithmus entwickelt und mit Daten zu Krankheitsverläufen von Tausenden Covid-19-Patientinnen und -Patienten darauf trainiert, die individuelle Sterblichkeit für die Erkrankung vorherzusagen. Den Algorithmus nennen sie „Covews“, kurz für "Covid-19 Early Warning System". Neben Wissenschaftlern des Tübinger Max-Planck-Instituts und von Roche waren auch Forscher der Harvard-Universität, der Harvard Medical School sowie des Massachusetts Institute of Technology, der Universitätsklinik Tübingen und des Kantonsspitals Winterthur an der Arbeit beteiligt.

Die Vorhersagen sind recht treffsicher, aber nicht perfekt

Covews liest aus den medizinischen Daten bis zu acht Tage im Voraus, wenn ein Patient zu sterben droht, und zwar mit einer Sensitivität von mehr als 95 Prozent. Das heißt, der Algorithmus erkennt bei 95 von 100 „zum Tode verurteilten“ Menschen korrekterweise, dass sie sterben werden, wenn keine Maßnahmen getroffen werden, um das zu verhindern.

Für das Training von Covews nutzten die Forschenden 33.000 anonymisierte Datensätze aus einer Kohorte namens Optum, die Patientinnen und Patienten in verschiedenen Krankenhäusern der USA erfasst. Sie fütterten den Algorithmus also mit Information darüber, wie sich routinemäßig erhobene Gesundheitsparameter einer Patientin oder eines Patienten im Krankheitsverlauf entwickelten und ob die Person an Covid-19 starben oder nicht. Auf diese Weise lernte Covews, in den Datensätzen Muster zu erkennen, die auf ein hohes Sterblichkeitsrisiko hinweisen. Wie treffsicher Covews dieses Risiko einschätzt, testete das internationale Team anschließend an etwa 14.000 weiteren Datensätzen aus der Optum-Kohorte sowie – um einen Zufallsfund auszuschließen – an anderen Datensätzen, die nicht von Optum stammten.

Statistische Unsicherheiten

Obwohl Covews zuverlässige Vorhersagen trifft, dürfte es bis zu seinem praktischen Einsatz noch eine Weile dauern. „Bis solche neuen Techniken im Klinikalltag angewendet werden, vergehen oftmals mehrere Jahre“, sagt Stefan Bauer. Das liegt unter anderem daran, dass Daten vielen Krankenhäusern nicht strukturiert vorliegen, was die Entwicklung einer geeigneten Software auf Basis des Algorithmus besonders herausfordernd macht. Indem die Forscher Covews frei zugänglich ins Netz stellen, schaffen sie jedenfalls die Voraussetzungen, den Algorithmus zügig in die Praxis zu bringen. Und Anwendung könnte er nicht nur bei Covid-19-Patienten finden. Mit dem entsprechenden Training könnte er auch das Sterblichkeitsrisiko für andere Erkrankungen vorhersagen.

Wie die meisten Vorhersagen mit Methoden des maschinellen Lernens werden die Prognosen von Covews nicht aus Kausalzusammenhängen, sondern aus Korrelationen abgeleitet. Bei Korrelationen kann es sich um einen rein statistischen, also nicht ursächlichen Zusammenhang handeln.

Das Entwickler-Team weist zudem auf eine Einschränkung der Covews-Berechnungen hin: Möglicherweise sind die Zahlen dadurch verzerrt, dass der Algorithmus nicht nur die Sterblichkeit, sondern auch den Abbruch der Behandlung voraussagt. Dann würden die Prognosen nicht nur auf medizinischen Fakten beruhen.

Entscheidungen über Therapien müssen immer Ärzte treffen

„Bei der Entscheidung, eine Therapie einzustellen, spielen nicht nur medizinische Überlegungen eine Rolle“, sagt Stefan Bauer. Auch religiöse, kulturelle oder persönliche Haltungen können Menschen dazu bringen, sich nicht weiter behandeln zu lassen. So können Menschen generell eine künstliche Beatmung ablehnen oder aus Furcht vor den Langzeitfolgen einer Erkrankung die Rettung ihres Lebens ablehnen. Und oft genug sind es Familienangehörige oder Freunde, die bei solchen Entscheidungen mitsprechen. „Über Therapiemaßnahmen müssen daher immer Ärztinnen oder Ärzte entscheiden“, so Bauer. „Unser Algorithmus kann jedoch Erkenntnisse liefern, die Menschen aus den Daten nicht ableiten können, und die bei medizinischen Entscheidungen helfen können.“


Mehr zum Thema:  

DWN
Weltwirtschaft
Weltwirtschaft Russland verkauft Öl teurer als 60-Dollar-Preisdeckel

In Asien wird der von den G7-Staaten verhängte Preisdeckel auf russisches Öl ignoriert. Russland kann sein Öl dort weiterhin für mehr...

DWN
Politik
Politik Twitter-Files: Wie die Social-Media-Plattform gezielt kritische Meinungen zensierte

Interne Dokumente zeigen, dass Twitter die Meinungsfreiheit jahrelang gezielt einschränkte. Opfer der Zensur wurden vor allem konservative...

DWN
Finanzen
Finanzen Größter Aktienfonds der Welt wettet jetzt gegen den Markt

Der 1,3 Billionen Dollar schwere norwegische Staatsfonds verfolgt künftig konträre Strategien. Dies sei notwendig, um im aktuellen Markt...

DWN
Deutschland
Deutschland Alarm im Ländle: Baden-Württemberg schrammt knapp an Strom-Engpass vorbei

Der baden-württembergische Netzbetreiber TransnetBW hat die Bürger Mitte der Woche in einer Warnmeldung aufgefordert, den Stromverbrauch...

DWN
Politik
Politik Rentenfonds des EU-Parlaments steht vor der Pleite

Ein Rentenfonds für EU-Abgeordnete verfügt bei Weitem nicht mehr über nötigen Anlagen, um die versprochenen Zahlungen abzudecken....

DWN
Weltwirtschaft
Weltwirtschaft Russland erreicht Rekord-Überschuss in Leistungsbilanz

Wegen hoher Export-Einnahmen erreicht Russland dieses Jahr einen Rekordüberschuss in seiner Leistungsbilanz. Ursache ist vor allem die...

DWN
Weltwirtschaft
Weltwirtschaft Handelsabkommen CETA stärkt Konzerne und schwächt den Mittelstand

Lange stand das Handelsabkommen CETA auf der Kippe, nun macht der Bundestag den Weg frei. Das Abkommen steht wegen umstrittener...

DWN
Politik
Politik WHO: Arzneimittel-resistente Bakterien auf dem Vormarsch

Die Zahl der arzneimittelresistenten Bakterien, die lebensbedrohliche Blutvergiftungen hervorrufen können, ist gestiegen. Antibiotika...