Technologie

Max-Planck-Institut entwickelt Algorithmus, der Todes-Risiko bei Corona voraussagt

Künstlich intelligente Algorithmen können das individuelle Sterblichkeitsrisiko von Corona-Patienten vorhersagen.
18.03.2021 09:45
Aktualisiert: 18.03.2021 09:45
Lesezeit: 2 min

Ein Forscherteam des Max-Planck-Instituts hat einen mit Künstlicher Intelligenz (KI) ausgestatteten Algorithmus entwickelt, der das Sterbe-Risiko von Covid-Patienten vorhersagen kann. Der Algorithmus hilft Ärzten also bei der Entscheidung, welche Betroffene in die Intensivbehandlung verlegt werden sollen. Er soll auch bei der Vorhersage des Sterblichkeitsrisikos bei anderen Erkrankungen einsetzbar sein.

Bei Covid-19 sind hohes Alter und Vorerkrankungen relevante Risikofaktoren für eine ernsthafte Erkrankung, es sind aber längst nicht die einzigen. Auch die Sauerstoffsättigung, die Zahl der weißen Blutkörperchen sowie der Kreatinin-Wert gehören dazu. „Aber selbst erfahrene Mediziner können in diesen Parametern nicht früh genug eindeutige Muster für einen tödlichen Verlauf erkennen, um eventuell noch die Therapie anzupassen“, sagt Stefan Bauer, Leiter einer Forschungsgruppe am Max-Planck-Institut für Intelligente Systeme in Tübingen.

Genau hier kann Künstliche Intelligenz hilfreich sein. Der Algorithmus lernt anhand von vielen Beispielen, Muster in Daten zu erkennen. Ein internationales Team um Stefan Bauer und Patrick Schwab (ehemaliger Mitarbeiter des Pharmakonzerns Roche) hat den Algorithmus entwickelt und mit Daten zu Krankheitsverläufen von Tausenden Covid-19-Patientinnen und -Patienten darauf trainiert, die individuelle Sterblichkeit für die Erkrankung vorherzusagen. Den Algorithmus nennen sie „Covews“, kurz für "Covid-19 Early Warning System". Neben Wissenschaftlern des Tübinger Max-Planck-Instituts und von Roche waren auch Forscher der Harvard-Universität, der Harvard Medical School sowie des Massachusetts Institute of Technology, der Universitätsklinik Tübingen und des Kantonsspitals Winterthur an der Arbeit beteiligt.

Die Vorhersagen sind recht treffsicher, aber nicht perfekt

Covews liest aus den medizinischen Daten bis zu acht Tage im Voraus, wenn ein Patient zu sterben droht, und zwar mit einer Sensitivität von mehr als 95 Prozent. Das heißt, der Algorithmus erkennt bei 95 von 100 „zum Tode verurteilten“ Menschen korrekterweise, dass sie sterben werden, wenn keine Maßnahmen getroffen werden, um das zu verhindern.

Für das Training von Covews nutzten die Forschenden 33.000 anonymisierte Datensätze aus einer Kohorte namens Optum, die Patientinnen und Patienten in verschiedenen Krankenhäusern der USA erfasst. Sie fütterten den Algorithmus also mit Information darüber, wie sich routinemäßig erhobene Gesundheitsparameter einer Patientin oder eines Patienten im Krankheitsverlauf entwickelten und ob die Person an Covid-19 starben oder nicht. Auf diese Weise lernte Covews, in den Datensätzen Muster zu erkennen, die auf ein hohes Sterblichkeitsrisiko hinweisen. Wie treffsicher Covews dieses Risiko einschätzt, testete das internationale Team anschließend an etwa 14.000 weiteren Datensätzen aus der Optum-Kohorte sowie – um einen Zufallsfund auszuschließen – an anderen Datensätzen, die nicht von Optum stammten.

Statistische Unsicherheiten

Obwohl Covews zuverlässige Vorhersagen trifft, dürfte es bis zu seinem praktischen Einsatz noch eine Weile dauern. „Bis solche neuen Techniken im Klinikalltag angewendet werden, vergehen oftmals mehrere Jahre“, sagt Stefan Bauer. Das liegt unter anderem daran, dass Daten vielen Krankenhäusern nicht strukturiert vorliegen, was die Entwicklung einer geeigneten Software auf Basis des Algorithmus besonders herausfordernd macht. Indem die Forscher Covews frei zugänglich ins Netz stellen, schaffen sie jedenfalls die Voraussetzungen, den Algorithmus zügig in die Praxis zu bringen. Und Anwendung könnte er nicht nur bei Covid-19-Patienten finden. Mit dem entsprechenden Training könnte er auch das Sterblichkeitsrisiko für andere Erkrankungen vorhersagen.

Wie die meisten Vorhersagen mit Methoden des maschinellen Lernens werden die Prognosen von Covews nicht aus Kausalzusammenhängen, sondern aus Korrelationen abgeleitet. Bei Korrelationen kann es sich um einen rein statistischen, also nicht ursächlichen Zusammenhang handeln.

Das Entwickler-Team weist zudem auf eine Einschränkung der Covews-Berechnungen hin: Möglicherweise sind die Zahlen dadurch verzerrt, dass der Algorithmus nicht nur die Sterblichkeit, sondern auch den Abbruch der Behandlung voraussagt. Dann würden die Prognosen nicht nur auf medizinischen Fakten beruhen.

Entscheidungen über Therapien müssen immer Ärzte treffen

„Bei der Entscheidung, eine Therapie einzustellen, spielen nicht nur medizinische Überlegungen eine Rolle“, sagt Stefan Bauer. Auch religiöse, kulturelle oder persönliche Haltungen können Menschen dazu bringen, sich nicht weiter behandeln zu lassen. So können Menschen generell eine künstliche Beatmung ablehnen oder aus Furcht vor den Langzeitfolgen einer Erkrankung die Rettung ihres Lebens ablehnen. Und oft genug sind es Familienangehörige oder Freunde, die bei solchen Entscheidungen mitsprechen. „Über Therapiemaßnahmen müssen daher immer Ärztinnen oder Ärzte entscheiden“, so Bauer. „Unser Algorithmus kann jedoch Erkenntnisse liefern, die Menschen aus den Daten nicht ableiten können, und die bei medizinischen Entscheidungen helfen können.“

Mehr zum Thema
article:fokus_txt
Anzeige
DWN
Finanzen
Finanzen Wie schützt man seine Krypto-Wallet? CLS Mining ermöglicht Nutzern eine stabile tägliche Rendite von 6.300 €.

Der Kryptowährungsmarkt erholte sich heute umfassend, die Stimmung verbesserte sich deutlich. Meme-Coins führten den Markt erneut an....

DWN
Politik
Politik EU plant Anpassungen an der DSGVO: Mehr Spielraum für KI zu Lasten des Datenschutzes?
19.11.2025

Die Europäische Union plant umfassende Änderungen ihrer Digital- und Datenschutzregeln, um Innovationen im Bereich künstlicher...

DWN
Politik
Politik Russisches Geld soll nach Kiew fließen - trotz Korruptionsskandals: Von der Leyen schreibt Merz & Co.
19.11.2025

Für die Nutzung der russischen Gelder werben insbesondere Bundeskanzler Friedrich Merz (CDU) und von der Leyen. Ihr Plan sieht vor, der...

DWN
Finanzen
Finanzen Rheinmetall-Aktie rutscht ab: Friedenspläne der USA zum Ukraine-Krieg belasten den Rheinmetall-Aktienkurs
19.11.2025

Die Rheinmetall-Aktie gerät nach frischen US-Friedenssignalen erneut in turbulentes Fahrwasser. Analysten bleiben optimistisch, doch die...

DWN
Finanzen
Finanzen US-Börsen im Fokus: Anleger reagieren auf überhitzte KI-Aktien und reduzieren ihre Positionen
19.11.2025

Investoren an den US-Börsen beobachten derzeit starke Bewegungen im KI-Sektor, während große Akteure gleichzeitig ihr Portfolio neu...

DWN
Wirtschaft
Wirtschaft Nach Exportbeschränkungen für Nexperia-Chips: Niederlande geben Kontrolle über Chip-Firma Nexperia ab
19.11.2025

Ende September hatte die niederländische Regierung die Kontrolle über Nexperia übernommen. China reagierte kurz darauf mit einem...

DWN
Finanzen
Finanzen Verbraucherumfrage: Debitkarten und Smartphones verdrängen Bargeld in Deutschland
19.11.2025

Eine aktuelle Umfrage zeigt, dass in Deutschland das Bezahlen mit Debitkarte und Smartphone zunehmend das Bargeld verdrängt. Fast die...

DWN
Finanzen
Finanzen Rentenplus 2026? Wann Ruheständler steuerpflichtig werden
19.11.2025

Rentner aufgepasst: Kommendes Jahr könnten die Renten in Deutschland erneut steigen. Was einerseits erfreulich ist, kann andererseits dazu...

DWN
Finanzen
Finanzen Aktienstrategie: Wie Profis erkennen, wann es Zeit zum Ausstieg ist
19.11.2025

Der perfekte Verkaufszeitpunkt an der Börse ist selten. Doch wer Gewinne nicht rechtzeitig realisiert, riskiert, sie wieder zu verlieren....