Technologie

Durchbruch: Uni Bayreuth entwickelt neue Theorie zur Entstehung des Sonnensystems

Forscher der Uni Bayreuth haben gemeinsamen mit Forschern der University of Oxford, der LMU München, der ETH und der Universität Zürich eine neue Theorie zur Entstehung des Sonnensystems entwickelt.
22.01.2021 14:13
Lesezeit: 3 min
Durchbruch: Uni Bayreuth entwickelt neue Theorie zur Entstehung des Sonnensystems
Die Entstehung des Sonnensystems in zwei unterschiedlichen Planetenpopulationen. Die inneren terrestrischen Protoplaneten beginnen früh zu entstehen, erben eine beträchtliche Menge an radioaktivem Aluminium-26 und schmelzen daher, bilden Eisenkerne und entgasen ihren ursprünglichen Gehalt an flüchtigen Bestandteilen schnell. Die Planeten des äußeren Sonnensystems beginnen ihre Bildung später und weiter draußen mit weniger radioaktiver Erwärmung und behalten daher den Großteil ihrer ursprünglich akkretierten flüchtigen Stoffe. (Bild: Mark A. Garlick / markgarlick.com)

Ein internationales Team von Forschern der University of Oxford, der LMU München, der ETH sowie der Universität Zürich und des Bayerischen Geoinstituts an der Universität Bayreuth hat eine neue Theorie für die Entstehung des Sonnensystems entwickelt: Die Theorie erklärt die Bildung der Planeten und viele Meteoritenfunde durch zwei Entstehungsschritte. Ihre Ergebnisse wurden am 22.01.2021 in „Science“ veröffentlicht, teilt die Universität Bayreuth mit.

Jüngste Erkenntnisse aus astronomischen Beobachtungen protoplanetarer Scheiben und geochemischen Laboranalysen von Meteoriten belegen, dass – anders als bisher angenommen – die Planetenentstehung nur etwa 200.000 Jahre nach der Bildung des jungen Sterns beginnt und in isolierten Regionen des jungen Sonnensystems stattfindet. Die terrestrischen Planeten wie Erde und Mars verdanken dem frühen Beginn ihrer Entstehung eine relativ trockene Zusammensetzung, während die äußeren Planeten wie Jupiter und Saturn, Asteroiden und Kometen während ihrer später einsetzenden Entstehung wesentlich mehr flüchtige Stoffe wie Wasser erhielten.

Astronomische Beobachtungen von planetenbildenden Scheiben haben gezeigt, dass diese Scheiben häufig nur schwache Turbulenzen aufweisen. Unter diesen Bedingungen zeigen die Modelle, dass die Eislinie, an der Wasser von der Gas- in die Eisphase übergeht, im frühen Sonnensystem von innen nach außen wanderte. Hierbei kam es zu einem frühen Bildungsschub von Planetesimalen, den Bausteinen der Planeten, im inneren Sonnensystem und einem weiteren Schub später und weiter außen. Diese zwei Entstehungsepochen erklären den frühen Beginn und das langwierige Ende der Planetenbildung im inneren Sonnensystem und den späteren Beginn und den schnelleren Abschluss der Planetenentstehung des äußeren Sonnensystems. Hierbei sammeln die zwei unterschiedlichen Planetesimalpopulationen nach ihrer jeweiligen Bildung weiterhin Material aus der umgebenden Scheibe und über gegenseitige Kollisionen. Jedoch führen die unterschiedlichen Zeiten der ursprünglichen Entstehung zu unterschiedlicher interner Entwicklung der sich bildenden Protoplaneten.

Prof. Dr. Gregor Golabek vom Bayerischen Geoinstitut an der Universität Bayreuth und Mitautor der Studie erläutert: „Die unterschiedlichen Entstehungszeiträume dieser beiden Planetesimalpopulationen bedeuten, dass sich ihr interner Wärmemotor aus dem radioaktiven Zerfall des kurzlebigen Isotops 26Al deutlich unterschied. Planetesimale des inneren Sonnensystems wurden sehr heiß, entwickelten interne Magma-Ozeane, bildeten schnell Eisenkerne und entgasten ihren anfänglichen flüchtigen Inhalt, was schließlich zu einer trockenen Planetenzusammensetzung führte. Im Vergleich dazu bildeten sich die Planetesimale des äußeren Sonnensystems später und erfuhren daher eine wesentlich geringere innere Erwärmung und somit eine begrenzte Eisenkernbildung und Freisetzung flüchtiger Stoffe. Das früh gebildete und trockene innere Sonnensystem und das später gebildete und wasserreiche äußere Sonnensystem wurden daher schon sehr früh in ihrer Geschichte auf zwei unterschiedliche Evolutionspfade gebracht“. Die frühe Aufspaltung der beiden Populationen bietet eine plausible Erklärung für die Zweiteilung des Isotopengehalts von innerem und äußerem Sonnensystem, die in vielen Meteoriten nachgewiesen wurde. Die beiden Planetenpopulationen bildeten sich zu unterschiedlichen Zeiten und in unterschiedlichen Entfernungen von der Sonne, deshalb wurden während der späteren Entwicklung nur unwesentliche Mengen an Material aus dem äußeren Sonnensystem in die inneren terrestrischen Planeten eingebaut und die isotopische Zweiteilung blieb erhalten. Die Modelle zeigen ebenfalls, dass die anwachsenden terrestrischen Planeten während der Existenz der protoplanetaren Scheibe erfolgreich vom ursprünglichen Entstehungsort ihrer Bausteine an der Eislinie an ihre heutigen Positionen im Sonnensystem wandern können.

Das vom Team vorgeschlagene umfassende Entstehungsmodell macht weiterhin die Voraussage, dass einer frühen, durch gegenseitige Kollisionen dominierten Akkretion eine Phase folgt, die von der Akkretion kleinerer Staubkörner, sogenannter „Pebbles“, dominiert wird. „Dies hätte beobachtbare Konsequenzen für heutige Asteroiden und Meteoriten, beides Überbleibsel des frühen Sonnensystems, die wir mittels Raumsonden und Laboruntersuchungen überprüfen können“, so der Wissenschaftler. „Weiterhin könnte die rasche Entstehung der Planetesimale in separaten Reservoiren einige der Ringstrukturen erklären, die in den letzten Jahren mittels Radioteleskopen in protoplanetaren Scheiben um besonders junge Sterne entdeckt wurden. Dies könnte durch weitere astronomische Beobachtungen von protoplanetaren Scheiben, in denen heute neue Planeten entstehen, zukünftig weiter untersucht werden. Die Studie zeigt ebenfalls, dass schon sehr früh feststeht, ob ein zukünftiger Planet wasserreich oder wasserarm sein wird. Dies eröffnet neue Wege, um die Planeten unseres Sonnensystems im Kontext der vielen in der Galaxie entdeckten, möglicherweise sehr wasserreichen, Exoplaneten zu verstehen.“

Prof. Dr. Gregor Golabek ist Mitautor der Studie. Der Geophysiker arbeitet derzeit hauptsächlich an der frühen thermomechanischen Entwicklung von terrestrischen Planeten. „Die Erforschung der Planetenentstehung und ihrer frühen Evolution ist meiner Meinung nach eine spannende Aufgabe, da Daten und Modelle aus so unterschiedlichen Disziplinen wie Astrophysik, Geochemie und Gesteinsphysik mit computergestützter Geodynamik kombiniert werden können, um ein besseres Verständnis der Prozesse zu erhalten, die das frühe Sonnensystem prägten“, so Golabek. Das Bayerische Geoinstitut an der Universität Bayreuth betreibt experimentelle Hochtemperatur-/Hochdruck-Forschung auf den Gebieten Mineralogie, Petrologie, Geochemie und Geophysik. Untersuchungen zur Struktur, Zusammensetzung und zur Dynamik des Erdinnern mehren unser Verständnis über gesteinsbildende Prozesse.

Diese Forschung wurde mit Mitteln der Simons Collaboration on the Origins of Life, des Schweizerischen Nationalfonds und des Europäischen Forschungsrats unterstützt.

Mehr zum Thema
article:fokus_txt
Anzeige
DWN
Finanzen
Finanzen Der XRP-ETF-Markt steht vor einem bedeutenden Wandel: Bereitet er den Weg für ein herausragendes Jahr 2026?

Der Kryptowährungsmarkt steht erneut vor einem potenziellen Wendepunkt. Während Bitcoin und Ethereum im Fokus institutioneller Anleger...

X

DWN Telegramm

Verzichten Sie nicht auf unseren kostenlosen Newsletter. Registrieren Sie sich jetzt und erhalten Sie jeden Morgen die aktuellesten Nachrichten aus Wirtschaft und Politik.

E-mail: *

Ich habe die Datenschutzerklärung sowie die AGB gelesen und erkläre mich einverstanden.

Ihre Informationen sind sicher. Die Deutschen Wirtschafts Nachrichten verpflichten sich, Ihre Informationen sorgfältig aufzubewahren und ausschließlich zum Zweck der Übermittlung des Schreibens an den Herausgeber zu verwenden. Eine Weitergabe an Dritte erfolgt nicht. Der Link zum Abbestellen befindet sich am Ende jedes Newsletters.

DWN
Politik
Politik EU-Parlament macht Weg für Verzicht auf russisches Gas frei
17.12.2025

Die EU steuert auf einen harten Schnitt zu: Spätestens 2027 soll Schluss sein mit russischem Gas. Doch Ausnahmen, LNG und der Streit mit...

DWN
Politik
Politik Aus Bürgergeld wird Grundsicherung: Kabinett schickt mehrere Reformen auf die Strecke
17.12.2025

Letzte Kabinettsrunde vor Weihnachten: Von Grundsicherung über Rente bis Kurzarbeitergeld treibt die Regierung mehrere Reformen an. Auch...

DWN
Unternehmen
Unternehmen Deutsche Bank bringt den Wero-Bezahldienst zu Millionen Kunden
17.12.2025

Der Wero-Bezahldienst erreicht jetzt Millionen Bankkunden: Deutsche Bank und Postbank schalten den vollen Funktionsumfang frei. Europa...

DWN
Wirtschaft
Wirtschaft Eurozone: Inflation im November bei 2,1 Prozent
17.12.2025

Die Eurozone-Inflation wirkt auf den ersten Blick stabil – doch eine neue Eurostat-Schätzung verändert den Blick auf den November. Auch...

DWN
Unternehmen
Unternehmen Steve Jobs und die Zukunft der Führung: Warum Chefs jetzt umdenken müssen
17.12.2025

Der Mittelstand arbeitet noch nach Regeln von gestern – doch die Herausforderungen von heute lassen sich damit kaum lösen. Der...

DWN
Wirtschaft
Wirtschaft Deutschland: Ifo-Index schwach – Jahr endet ohne Aufbruchsstimmung
17.12.2025

Der Ifo-Index sendet zum Jahresende ein klares Warnsignal für Deutschlands Wirtschaft. Sinkende Erwartungen, enttäuschte Hoffnungen und...

DWN
Panorama
Panorama DHL-Betrugsmasche: Wie Kriminelle die Vorweihnachtszeit und das Paketchaos ausnutzen
17.12.2025

In der Vorweihnachtszeit nutzen Kriminelle das Paketchaos aus, um sich mit der sogenannten DHL-Betrugsmasche zu bereichern. Gefälschte...

DWN
Finanzen
Finanzen KNDS-IPO: Börsengang des deutsch-französischen Panzerherstellers rückt wohl näher
17.12.2025

Der KNDS-IPO nimmt konkrete Formen an: Doppelnotierung, Milliardenbewertung und klare Abgrenzung zu Rheinmetall prägen die Debatte....